Telegram Group & Telegram Channel
Как обеспечить последовательность очистки данных для временных рядов в обучающем и тестовом наборах данных с учётом разных временных окон

Для временных рядов тестовый набор обычно относится к более позднему временному окну, чем обучающий. Если распределение временного ряда изменяется, важно, чтобы шаги очистки (например, заполнение пропусков) и создание признаков (например, скользящие средние) не использовали данные из будущего.

Преобразования (например, скользящее среднее) следует рассчитывать только на основе прошлых данных, используя тренировочное окно для выбора стратегии очистки, а затем применяя её к тестовому окну без перерасчёта с использованием будущих данных.

⚠️ Подводный камень

Некоторые методы очистки могут неявно использовать будущие данные. Например, если для заполнения пропусков используется медиана по всему набору данных, можно случайно использовать данные из будущего. Это приводит к утечке данных.

Правильный подход — использовать историческую информацию для очистки и создания признаков, строго следуя причинной логике.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/927
Create:
Last Update:

Как обеспечить последовательность очистки данных для временных рядов в обучающем и тестовом наборах данных с учётом разных временных окон

Для временных рядов тестовый набор обычно относится к более позднему временному окну, чем обучающий. Если распределение временного ряда изменяется, важно, чтобы шаги очистки (например, заполнение пропусков) и создание признаков (например, скользящие средние) не использовали данные из будущего.

Преобразования (например, скользящее среднее) следует рассчитывать только на основе прошлых данных, используя тренировочное окно для выбора стратегии очистки, а затем применяя её к тестовому окну без перерасчёта с использованием будущих данных.

⚠️ Подводный камень

Некоторые методы очистки могут неявно использовать будущие данные. Например, если для заполнения пропусков используется медиана по всему набору данных, можно случайно использовать данные из будущего. Это приводит к утечке данных.

Правильный подход — использовать историческую информацию для очистки и создания признаков, строго следуя причинной логике.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/927

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA